Object Recognition using the Invariant Pixel-Set Signature
نویسندگان
چکیده
The paper describes the Invariant Pixel Set Signature (IPSS) method for object recognition. Test are carried out on COIL-20, a publicly available database of 72 views of 20 natural object taken on a rotating turntable. With a model built from a single view, recognition performance measured by the average match percentile is above 98% in the ( 20;+20) interval and above 96% for 30 degrees. For some object, 100% first rank is achieved for all 72 views. Robustness to occlusion is demonstrated using test images with half of the test image covered. For a small change of viewpoint ( 10) recognition of the occluded object is perfect, deteriorating gracefully with the increase in viewpoint change.
منابع مشابه
Pictorial Recognition Using Affine-Invariant Spectral Signatures
This paper describes an efficient approach to pose invariant object recognition employing pictorial recognition of image patches. A complete affine invariance is achieved by a representation which is based on a new sampling configuration in the frequency domain. Employing Singular Value Decomposition (SVD), the affine transform is decomposed into slant, tilt, swing, scale and 2D translation. Fr...
متن کاملE cient Rotation Invariant Feature Extraction for Texture Segmentation - via Multiscale Wavelet Frames
This work presents an approach to the extraction of rotation invariant features for texture segmentation using multiscale wavelet frame analysis. The texture is decomposed into a set of bandpass channels by a circularly symmetric wavelet lter, which then gives a measure of edge magnitudes of the texture at di erent scales. The texture is characterized by local energies over small overlapping wi...
متن کامل3D Models Recognition in Fourier Domain Using Compression of the Spherical Mesh up to the Models Surface
Representing 3D models in diverse fields have automatically paved the way of storing, indexing, classifying, and retrieving 3D objects. Classification and retrieval of 3D models demand that the 3D models represent in a way to capture the local and global shape specifications of the object. This requires establishing a 3D descriptor or signature that summarizes the pivotal shape properties of th...
متن کاملTraining Set of Data Bin for Small Black Pixels Neighborhood Recognition of Each Boundary
We first describe how to “fuzzify” the estimated binary columns to create a [0,1]-valued column. Werefer to this [0,1] -valued column as the soft segmentation column of the noisy spectrogram column.Similarly to the collection of soft segmentation columns as the soft segmentation image, or simply asthe soft segmentation. The band-dependent posterior probability that the hard segmentation columnv...
متن کاملUse of the Shearlet Transform and Transfer Learning in Offline Handwritten Signature Verification and Recognition
Despite the growing growth of technology, handwritten signature has been selected as the first option between biometrics by users. In this paper, a new methodology for offline handwritten signature verification and recognition based on the Shearlet transform and transfer learning is proposed. Since, a large percentage of handwritten signatures are composed of curves and the performance of a sig...
متن کامل